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Abstract 
Stereo-video cameras have become an important tool worldwide for enumerating abundance and 
length compositions of marine fish. The two most common approaches for enumerating are 
referred to as MaxN and MeanCount, where the former counts fish on the single video frame with 
the most individuals observed and the latter uses the mean across multiple frames. Previous studies 
have demonstrated that both approaches may work well for computing relative abundance. 
However, basic fish population age-structure (e.g. more younger fish) and fish schooling 
characteristics (e.g. fish of similar size/age swim together) suggest the potential for bias in length 
compositions computed from the MaxN approach, as the single video frame with the most 
individuals would tend to overrepresent smaller, more populous fish. To evaluate the two 
approaches, we simulated a stationary video system placed on a sampling site inhabited by moving 
fish, and we compared length compositions estimated from each approach to that of the true, 
underlying population. Indeed, MaxN appears biased over a range of potential factors, in which 
the bias is toward estimates of mean size that are smaller than the true values. The factors leading 
to biased age/length estimates from MaxN include 1) large fish counts in the single frame, 2) fish 
schooling by age/length, especially at moderate school densities, and 3) small camera viewing area 
relative to the site being sampled. In addition to the general evaluation, we applied the simulation 
framework to video parameters derived from data on red snapper (Lutjanus campechanus) in U.S. 
Atlantic waters. The results suggest that the MaxN length composition bias is small for red snapper 
due primarily to the low counts of fish on site and low levels of schooling observed.  
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1. Introduction 

Sampling of fish using video has become more widespread as fishery scientists continue to seek 

data improvements and more accurate stock assessments. Video has the advantages of being a non-

lethal sampling technique for counting fish and is generally less selective than traditional sampling 

gears (Morrison and Carbines 2006, Bacheler et al. 2013), but also has the disadvantage of lacking 

basic biological data that  lethal sampling approaches have historically provided (e.g., length, age, 

maturity, etc.). Knowing the length and age of sampled fish is vital to many modern stock 

assessment and population demographic methods (Ono et al. 2015). Consequently, video 

collection programs are increasingly using stereo-video, which allows the estimation of fish length 

(Cappo et al. 2003, Cappo et al. 2004, Watson et al. 2005, Watson et al. 2010, Shortis et al. 2013, 

Letessier et al. 2015, Langlois et al. 2015, Langlois et al. 2020, Schramm et al. 2020). This is an 

important advance in video data collection, but may pose issues with video enumeration methods 

that were established primarily to estimate abundance rather than length composition.  

The enumeration of fish on video is typically based on a single frame when the most 

individuals of the species of interest are observed (“MaxN”; Watson et al. 2010, Langlois et al. 

2012; also referred to as MinCount, because the maximum observed on any frame is an estimator 

of the minimum abundance on the site). The relationship between MaxN and true abundance may 

be nonlinear, however, and methods that consider multiple frames have also been developed.  For 

example, Schobernd et al. (2014) developed an alternative unbiased video metric called 

“MeanCount,” where fish abundance is estimated as the mean number of fish observed in a series 

of 41 equally spaced frames over the viewing interval (see also Bacheler and Shertzer 2020). 

Although there are different methods for enumerating fish on video, the measurement of fish 
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lengths from stereo-video has almost universally occurred at MaxN in order to avoid repeated 

measurements of the same fish (Langlois et al. 2012).  

Reading stereo-video data for fish lengths versus enumerating fish counts may pose 

different challenges with respect to statistical properties and sampling efficiency. Past studies have 

shown that using MaxN methods for computing relative abundance work well for tracking fish 

populations through time under most conditions (Campbell et al. 2015), despite potential nonlinear 

relationships with true abundance (Schobernd et al. 2014). Ideally, pilot studies and sampling 

designs are conducted a priori to optimize efficiency in data collection (Mallet et al. 2021). 

However, the statistical properties of length composition estimates from MaxN and MeanCount 

video reading has not previously been studied.  

Given that fish often school by size (Pitcher and Parrish 1993, Hoare et al. 2000) and 

younger fish are typically more numerous than older fish for any particular species, the MaxN 

approach may be biased when measuring fish on a single video frame with the most fish observed.  

On the other hand, the MeanCount has less potential for bias given that it is not based on an extreme 

value statistic, but has (to our knowledge) never been used for quantifying length distributions. 

 Determining the bias and precision of fish lengths from MaxN and MeanCount metrics is 

important for accurately parameterizing stock assessment models. Length composition data 

sampled from a fishery-independent video gear can provide important population dynamic 

information on the shape of the selectivity curves, the amount of total mortality, and cohort 

strength. Video samples have the potential to provide important information on smaller and 

younger fish, potentially serving as an independent estimate of recruitment. Unbiased video 

samples could also be the basis for comparing length composition data from the fisheries, resulting 

in improved selectivity estimates in stock assessments (Ono et al. 2015).   
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Here, we address potential error (e.g., bias) in stereo-video estimated length compositions 

by simulating a stationary video system placed on a sampling site inhabited by moving fish, and 

then comparing length compositions estimated from MaxN and MeanCount approaches to those 

of the true simulated population. We evaluate how length compositions based on the two methods 

are affected by local fish abundance, size/age dependent schooling behavior, and the viewing area 

of the video system relative to the area of sampling site. Our goals are to identify conditions under 

which estimated length compositions from either approach may be considered accurate and to 

quantify bias where it occurs. We then apply the model using parameter estimates for red snapper 

(Lutjanus campechanus) in U.S. Atlantic waters to demonstrate both how the model can be applied 

to actual fish stocks to explore properties of estimated length compositions for this particular 

species.  

 

2. Methods 

2.1 Simulated Population and Sampling Designs 

We used a simple simulation study to investigate several potential factors that lead to bias in length 

composition data collected from stereo-video capture systems using MaxN and MeanCount 

methods. We simulated a stationary video sampling system placed on a single site inhabited by 

moving fish. More specifically, a known age-structured population of fish (N) was simulated on 

the site with various levels of schooling properties and movement in and out of the camera field 

of view. We configured the simulation to approximate the sampling system used by the Southeast 

Reef Fish Survey (SERFS), which samples reef-associated species in Atlantic waters of the 

southeast United States (Bacheler et al. 2013, Schobernd et al. 2014). All simulations were coded 

using R (R Core Team, 2021). 
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The SERFS is a collaborative reef fish monitoring survey consisting of multiple vessels 

sampling along the southeast United States Atlantic continental shelf from Cape Hatteras to Cape 

Canaveral using standardized methods.  Sampling occurs on hard-bottom sites between 15 and 115 

m deep during daylight hours using baited chevron traps outfitted with video cameras (see 

Bacheler and Shertzer 2020 for more details). Since 2019, stereo-video cameras have also been 

attached to a subset of chevron traps to provide fish length measurements that could be used to 

estimate selectivity patterns of video and trap gears (e.g., Langlois et al. 2015).    

To simulate the video sampling process, we first generated a fish population with ages 

ranging from 1 to 20 years (y) and an equilibrium (constant recruitment) age structure conditional 

on an assumed annual natural mortality rate (M). For a given sampling site, a fish population (N) 

was randomly generated by drawing ages from a multinomial distribution with N fish and 

probabilities determined by the equilibrium, exponentially decaying age structure. We implicitly 

assumed selectivity or availability of fish to the video gear was 1.0 for all ages, although our 

qualitative findings should be robust to this assumption. The length of the fish (L, with generic 

units) at each age (a) followed a von Bertalanffy growth curve with parameters L∞, K, and t0 (Table 

1, Quinn and Deriso 1999). The height of fish (H) was fixed at 0.5 of L so that age specific two-

dimensional fish area is LaHa. Variability in size at age for individual fish was modeled using a 

normal distribution with an age-constant coefficient of variation (cv) (Table 1). 

To simulate a video system for detecting fish, we made a few simplifying assumptions for 

ease of computation (Table 2). We assume there is no error in the measurement of fish lengths 

from videos.  Fish were simulated in two dimensions, ignoring the distance of fish from the camera. 

Fish were simulated as if swimming on a 360-degree cylindrical plane around the camera. The 

distance of the fish from the camera is then a fixed quantity and was determined in our simulation 
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through a field of view parameter, specified as a width expressed in units of fish lengths of 

maximum size (L∞). In this case, we used a somewhat arbitrary field of view width (w) of eight 

maximum sized fish, 8L∞. We also fixed the proportion of the camera view (Cp) to 45%, or 162 

degrees, based on the optical-physical properties of Go-Pro camera systems currently in use by the 

SERFS. The vertical dimension of the camera viewing system was assumed to be infinite or not 

limiting (e.g. fish stayed in the vertical view at all times). Thus, the only way fish moved in and 

out of camera view (detection) was through horizontal movement. Fish were assumed to be 

detected by the camera when the mid-point of their body was within the fixed field of view. Using 

the specified values of Cp and w, the simulated cylindrical plane is then defined in fish length units 

of L∞ and is w/Cp wide and w high. The height was arbitrarily set for visual simplicity, but has no 

impact on the simulation results. In natural systems, fish can leave the site or view of the camera 

in ways we did not model, but this simply has the effect of reducing the effective camera view. In 

that sense the effective viewing field of any video camera in practice is less than its optical 

measurements alone. 

Fish were distributed on a sample site surrounding the camera by first specifying the 

random x-y positioning of a box to contain the school of fish. Fish schools were assumed to be 

structured by age class, such that all fish of a particular age class would tend to school together. 

The density of the schools (Sd) was specified by a value of the number of fish (na) per unit of fish 

area (LaHa) for each age (a). The value of Sd was assumed constant across ages. The value of Sd 

constrains the positioning of the midpoint of each individual fish such that they stay within the 

area defined by LaHa. A value of Sd = 1 implies the size of the school is confined to a box with 

dimensions naLa by naHa fish length, such that 10 fish in a school would be contained within a box 

of size equal to 10 fish lengths by 10 fish heights. A value of Sd = 0 implies no schooling or the 
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box for the school equals the entire cylindrical plane. A value of Sd = 2 implies 10 fish would be 

constrained to a box 5 fish lengths by 5 fish heights in size. Because we are only dealing with two 

dimensions in this simulation, Sd ≈ 9 would be a theoretical maximum under a tight schooling 

assumption of fish maintaining a unit fish length distance between each other in three dimensions 

(i.e. sphere packing).  

Movement of individual fish was governed by a two-stage randomization process. In the 

first stage the box containing the school of fish was repositioned by adding a random movement 

step size that includes the entire cylindrical plane. In the second stage of the randomization process 

the individual fish were repositioned with an additive random step size constrained by the box for 

the fish school. Random uniform numbers were drawn in both the x and y dimensions of the entire 

cylindrical plane to determine the movement step size for the fish school box positioning. A 

wrapping function was used to force fish whose random movement went outside the right or left 

side to follow a 360-degree cylinder. This randomization process was repeated at each time step, 

which is arbitrary, but assumes fish position is independent with each time step.  

Autocorrelation in movement of the fish school from one time step (frame) to the next time 

step was controlled through a correlation parameter (ρ), specified as a value on the range [0-1]. 

Mathematically this was accomplished by multiplying the random movement step size by 1-ρ.  A 

value of ρ = 1 forces no school movement in each time step, while a value of ρ = 0 allows for full 

movement anywhere within the cylindrical plane. In essence, the effect of this parameter is similar 

to reduced sample sizes or shortened periods of video time. If fish did not move at all, then all 

frames in the video would be identical and the same as a single snapshot. Thus, the movement 

algorithm is not explicitly connected to the speed of swimming, but rather is controlled by the 
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correlation parameter. A visual example of a simulated video frame with fish on a site and viewing 

area of the camera is shown in Figure 1. 

In summary, the video simulation generates N multinomial sampled random fish based on 

the equilibrium age structure from a known population. These fish are then randomly moved about 

the cylindrical plane of view for 41 video frames (time steps). All the frames together represent a 

MeanCount sample and the frame with the highest count represents the MaxN sample. Simulation 

settings are systematically changed to experimental values shown in Table 2 and compared to the 

‘true’ population values. 

  

2.2 Length Composition Data 

Using the video simulation system described above, we implemented two types of fish 

counting methods to derive data sets, MeanCount and MaxN. These video sampling methods rely 

on counting the fish in multiple video frames during a soak interval of time. To match the SERFS 

methods we simulated 41 frames for counting fish, using all frames for MeanCount samples and 

the single frame with the maximum number of fish for MaxN samples.  

To evaluate performance of the estimators, we created MeanCount and MaxN samples of 

lengths and compared these estimates to the known lengths of the site’s fish population. More 

specifically, we compared mean length estimates and length distributions (compositions) between 

the control (true) population and the simulated video samples. To compute compositions for the 

MeanCount estimator, length samples from the 41 frames were pooled together; for the MaxN 

estimator and the true composition, lengths were simply enumerated from the single frame or 

population, respectively. Length measures were averaged to produce mean length estimates and 

measures were binned into count vectors of 19 equal sized bins from fish sizes of 0 to L∞ (1000) 
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plus a bin for all fish over L∞ to produce proportional length compositions (see length data in 

Figure 2).  

Mean lengths were examined as the distribution of the differences between sampled and 

simulated (true) mean lengths using the R package ‘vioplot’ (Adler and Kelly, 2021). Difference 

distributions with means not equal to 0 is an indicator of bias and the spread of the distributions is 

an indicator of variance. We also report the proportion of runs (p-value) that were found to have 

statistically significant similar length distributions (multinomial vectors) using the R package 

‘XNomial’ (Engels 2015). This is considered an exact test based on a randomization process to 

evaluate whether the multinomial vectors of true length composition and sampled length 

composition are similar. In this study, we applied 100,000 randomization trials with the function 

‘xmonte.’ The primary advantage is that it avoids potential issues of asymptotic approximations 

(e.g. likelihood ratio or chi-square), but comes at the cost of extra computation time. 

 

2.3 U.S. South Atlantic Red Snapper Case Study 

The video simulation described above depends on multiple parameters that are likely to vary 

temporally during sampling, as well as by the size of the population and schooling nature of the 

species being studied. As a case study, we used stereo-video data collected by SERFS on red 

snapper (Lutjanus campechanus). The data were collected from 2018 to 2019 with a sample size 

of 72 videos that were read for lengths following the MeanCount protocols. The data included 

measurements of individual fish sizes, as well as x-y-z positions of fish within a video frame. We 

used this data set to estimate the range and statistical distribution of n fish per frame and schooling 

density (Sd) based on the red snapper positions in the video frame. For simplicity we did not attempt 

to break the red snapper data into size categories for determining Sd, rather Sd was computed for 
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all red snapper in the frame. Exponential, negative binomial, gamma, and lognormal statistical 

distributions were fit to the values of n and Sd measured for red snapper in each video frame. The 

best fit distributions were then used to draw random values for n and Sd in the simulation analysis 

described above, which was run for 20,000 trials.  

 

3. Results 

3.1 General results 

Applying the fixed values of N = 40, M = 0.2, Sd = 1, ρ = 0, and Cp = 0.45 produced a clear bias in 

the estimated age and length composition from the MaxN method (Figure 2). The multi-modal 

pattern shown in the length composition was the result of modeling ages 1 and 2 with cv = 0.2, 

resulting in distinct age classes showing in the length composition data. The pattern of positive 

bias at the smaller size/ages and negative bias at the larger size/ages is a consistent result in our 

study when bias in the MaxN method is present. This bias pattern results in smaller mean length 

in the sample relative to the true value in every case. Therefore, a simpler representation of this 

pattern is a measure of difference in mean length from the sample and true population. In contrast, 

the MeanCount method indicated no bias in the composition estimates.  

The effect of the number of fish on site was tested using a range of N = 5 to 200, with fixed 

parameters of M = 0.2, Sd = 1, ρ = 0, and Cp = 0.45. These simulations suggest the MaxN estimates 

are unbiased at the lowest number of fish on site (N = 5), but the negative bias in mean length 

increases with increasing number of fish on site. The increase in bias appears to asymptote at the 

highest levels of N fish on site. The MeanCount estimates appear to be unbiased for all values of 

N (Figure 3). The variance in mean length differences for MaxN and MeanCount decreases with 

increasing N, but is notably larger for the MaxN estimates overall (Figure 3). At the lowest value 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 



of N = 5, the proportion of length composition estimates that match the true value is much higher 

for MaxN compared to MeanCount, but for N ≥ 20, the MeanCount length composition estimates 

match the true values much better than the MaxN estimates. At the highest value of N = 200, the 

MaxN length composition estimates become so biased that only 2% of estimates statistically match 

the true length compositions (Figure 3).  

Next, we tested the effects of changes in M using a range of 0 to 0.5 (y-1). In reality, M = 0 

is impossible, but in this scenario, we were essentially testing the magnitude of the differences 

between younger (smaller) and older (larger) fish as increasing M would tend to skew the 

population toward younger individuals. MaxN estimates showed a pattern of increasing bias with 

increasing M values up to M = 0.2 and then slightly decreasing bias out to values of M = 0.5 (Figure 

4). Also, the proportion of length composition estimates from MaxN that matched the true values 

increased steadily over the range of M values. MeanCount estimates remained unbiased, had a 

lower variance in length differences, and had very good matches in the length composition 

estimates over the full range of M values (Figure 4). 

This simulation analysis was initially motivated by the suspected potential for bias of 

age/length composition estimates resulting from fish schooling (Sd). Both MaxN and MeanCount 

estimates appear to be unbiased when there is no schooling effect in place (Figure 5). As the 

schooling density increases, the simulations indicate that the bias in MaxN estimates increases 

quickly, reaching a saturation level at Sd ≥ 0.25. For MeanCount the bias was near zero across the 

range of schooling densities, but variance increased with higher schooling density. The length 

composition estimates from the MaxN method showed an improved match percentage with 

increasing values of Sd, while the MeanCount estimates seem to match almost perfectly across all 

values of Sd (Figure 5). The case of Sd = 0 suggests that even when fish schooling is not present, 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 



the MaxN method is unable to match the true length composition, with only 52% of the estimates 

indicating statistically significant matches (Figure 5). 

We next evaluated the effects of various levels of correlation (ρ) in movement on both 

MaxN and MeanCount estimates. Reduced movement, as indicated by higher ρ values, does not 

start to affect length estimates until it reaches extreme values of ρ = 0.75 and 1.0 (Figure 6). At the 

value of ρ = 1.0, which implies no fish movement, neither MaxN nor MeanCount are able to 

estimate the length composition reliably (Figure 6). 

Last, we evaluated the effects of the camera view (Cp) on length composition estimates 

from the two reading methods. Not surprisingly, smaller Cp values increased variance in both 

MeanCount and MaxN samples, while increasing values approached complete sampling (a census) 

and thus perfect estimation (Figure 7). There is zero bias for the MaxN estimates at Cp = 0.95, as 

indicated by an absent violin plot and a matching statistic of 1.0 (Figure 7). It should be noted that 

even with a Cp = 1.0, suggesting a 360o camera system, the effective view is likely to be something 

less than 100% due to factors that affect detection, such as turbidity. 

 

3.1 Red Snapper Results 

Red snapper stereo-video data indicated considerable variability in the number of fish per frame 

(n) and Sd. Values for n ranged from 1 to 42 and values for Sd ranged from 0.2 to 4.5. The best fit 

for n came from an exponential distribution with a rate parameter equal to 0.242. To convert this 

to a value for N for use in our video simulation, we divided it by the proportion of viewing area 

covered by the video camera, Cp = 0.45. This distribution suggests that we should most frequently 

expect n<5 fish per frame, as was observed in the data. The best fit for the Sd measure came from 

a lognormal distribution with mean equal to -0.0086 and standard deviation equal to 0.5176. This 
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distribution suggests a generally low schooling value, with a mean even lower than the value of Sd 

= 1 used in most of the simulation analyses above. The empirical estimates for red snapper were 

used in a stochastic simulation, drawing randomly from the fitted distributions described above 

using our video simulator for red snapper. 

In the red snapper simulations, bias was observed in the MaxN estimates for n > 8, while 

the MeanCount method estimates remained unbiased for all values of n (Figure 8). However, more 

than 65% of the red snapper video samples had fewer than 10 fish per frame. Thus, when all 

simulated samples are pooled, the differences between age and length composition estimates from 

MaxN and MeanCount nearly disappeared (Figure 9).  

 

4. Discussion 

Our simulations showed that MeanCount produces unbiased estimates of length 

composition data, and compared to MaxN, generally has a lower variance in mean length estimates. 

MeanCount estimates also tended to statistically match the true length composition data more 

frequently than MaxN estimates across a wide range of conditions. MaxN can produce biased 

length compositions, depending on conditions.  The effect is most evident for species that show 

strong age-dependent schooling behavior and, in our simulation, was always in the direction of 

underestimating mean length. However, our case study for red snapper indicated very little 

difference between length composition estimates from the MaxN and MeanCount methods, owing 

to the low values for Sd and n.  It should be noted that field observations typically report loosely 

aggregated schooling behavior, which could explain a dampened bias effect for that species. 

 MaxN is the predominant method being used around the world to count and measure fish 

from video data (Ellis and DeMartini 1995, Merritt et al. 2011, Cappo et al. 2004, Campbell et al. 
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2018). The primary reason for this lies in the efficiency of reading one video frame for lengths 

versus many frames for MeanCount. Our study suggests the optimal method for reading fish videos 

for length data may come down to a bias versus cost (manpower) trade-off. Our simulation shows 

that MaxN is unbiased when there is no fish schooling by age or size and when the numbers of fish 

per frame are low (n < 10). However, when fish school by age or length (Sd ≥ 0.25) and the number 

of fish per frame increases (n > 10), then MeanCount will produce unbiased and statistically better 

length composition data than MaxN.  

Our case study for red snapper indicates only minor differences in length composition 

estimates from MaxN and MeanCount methodologies, because this species exhibits relatively low 

Sd and n values. The differences are so small that it seems unlikely that this would affect stock 

assessment or population estimates relying on length composition data. We chose red snapper for 

convenience and data availability, but it is a large predator on U.S. South Atlantic reef sites and 

therefore may have lower site abundance and exhibit less schooling behavior than other species in 

the region, such as vermilion snapper (Rhomboplites aurorubens) or greater amberjack (Seriola 

dumerili). More stereo-video analysis is needed for other fish species to indicate typical values of 

Sd and n.  

In our simulation we focused on a video camera viewing proportion of 45%, based on 

current Go-Pro camera systems in use for SERFS. This value is likely an overestimate because of 

factors such as water clarity, vertical movements of fish out of range of camera (ignored in this 

simulation), and obscuring by overlapping fish, all of which will tend to reduce the effective 

viewing area of a camera. The simulation results here indicate lower view proportions will increase 

the bias induced by MaxN sampling when fish schooling is present. Our simulation also showed 

that the bias in length composition data from the MaxN method diminishes at high values of camera 
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viewing (Cp > 0.75). This implies a nearly 360o camera viewing system may help overcome 

potential bias in length composition data from MaxN. Recent work has also shown that 360° 

cameras improve relative abundance estimation based on MaxN as well (Kilfoil et al. 2017, 

Campbell et al. 2018). This is another example of a potential bias versus cost trade-off in fish 

length composition data collection. The cost of a 360o stereo-video system could be quite high, but 

when balanced with the difference in cost between reading video data using MaxN versus 

MeanCount, the cost might be justified.  

The biases in length composition estimates from MaxN appear over a range of potential 

conditions. The bias is in one direction and is driven by the differential age or length composition 

produced by a cohort-structured population, combined with fish schooling by age or length. 

Natural fish age and length structures rarely match the equilibrium patterns shown in Figure 2 at 

any particular time, but the average across years will generally tend toward an equilibrium. Thus, 

the potential bias seen in this simulation will also follow the age/length structure fluctuations 

created by varying recruitment and mortality processes, being high in some years and lower in 

others. The pattern of bias illustrated in Figure 2 suggests that high recruitment will likely amplify 

the bias at younger ages, and then as that strong cohort decays, the bias will diminish. Fish 

schooling or shoaling are highly dynamic processes that are likely habitat- and species-dependent. 

In general, fish do tend to aggregate by similar length (Hoare et al. 2000, Pavlov and Kasumyan 

2000). For some species, the tendency for schooling may dissipate with age. Our simulation 

assumed the schooling density was constant across all ages and only the number fish declined with 

age. However, schooling density is but one factor that affects sampling properties of video systems. 

The number of fish on a particular site, the field of view of the camera, and the conditions of the 

sampling site (e.g., currents, predators, bait) all have the potential to affect how fish schooling 
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behavior is expressed for a given video sample. Given the values for parameters from our 

simulation that produced biased length composition estimates, the type of species most vulnerable 

to bias would be fishes lower on the trophic scale, primarily forage fishes and other fishes known 

to school together (e.g. sparids, scombrids, carangids). The species less likely to be affected would 

be top predatory fish that are more solitary. This suggests that understanding schooling behavior 

of the target species is required to determine the optimal method for video data analysis. Without 

that understanding, MeanCount estimates may be the best default approach, given that it was less 

biased over a broad range of conditions. 

Our conclusions from this analysis are predicated on the simulation’s accuracy at 

mimicking the natural system. Regardless of the many reasons why this simulation may not exactly 

reflect real fish swimming near a video camera, the range and number of factors we evaluated 

support the conclusion that there is potential for the MaxN sampling process to produce biased 

length composition data and that care should be taken when deciding what video reading method 

is applied to a given species.   

Many video sampling systems are limited to clear water in topical and sub-tropical areas 

of the world. These systems often coincide with higher fish species diversity, thus making the 

decision about the overall best data collection system for a multi-species system very difficult. As 

video data collection systems shift toward stereo-video usage in fish sampling, the ability to 

measure the depth of viewing or z dimension opens up many possibilities, including possible 

density or absolute abundance measures. Fully understanding the potential biases of MeanCount 

and MaxN methods will be important if fish video sampling heads in that direction. In this paper, 

we mimicked the 41 frame counts used by SERFS for the MeanCount method, however the 

simulation framework could be easily modified to test the cost-benefit of different numbers of 
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frames to use for MeanCount or MaxN. Until we improve computer automated video reading 

systems, the cost trade-offs that have to be considered for the best overall data collection systems 

are further complicated by video processing costs. With proper accounting of video processing 

costs, such an analysis could point to the optimal number of frames and most efficient video 

sampling method overall, be it MeanCount or MaxN (Bacheler and Shertzer 2015). This study and 

others that may follow will hopefully aid in that decision-making process. 

 In our red snapper case study, the conclusion was that MaxN estimates would be equally 

valid as MeanCount estimates for use in demographic analysis or stock assessments. This may be 

the case for many other species as well. However, should a species have relatively high abundance 

and exhibit moderate to high levels of schooling, then MeanCount may provide more reliable 

length composition estimates. In general, length composition data in stock assessments can be 

important, and in particular video methods have the potential to fill important data gaps, including 

information on the smallest individuals (Ono et al., 2015). If sampling systems shift away from 

collection of physical specimens, and thus reduced age sampling, and toward video methods, the 

importance of accurate length data in stock assessments will only increase.  
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Table 1.  Values of the biological parameters used in the population simulation. 490 
 491 
Biological factor Parameter Values 
Age range (y) a 1 to 20  
Natural mortality (y-1) M 0.2  
Asymptotic length (length units) L∞ 1000  
Growth rate (y-1) K 0.25  
Spawning adjustment (y) t0 -0.5  
Height of fish (length units) H 0.5L  
Variability in length-at-age cv 0.2 

  492 



Table 2.  Factors used in the simulation tests which were run 20,000 times. 493 
 494 
Video Factor Parameter Base Value Experimental Range 
Video width of view w 8L∞  fixed 
Number of fish on site N 40 {5, 20, 40, 100, 200} 
Natural mortality M 0.2 {0, 0.1, 0.2, 0.35, 0.5} 
Schooling density Sd 1 {0, 0.25, 0.5, 1, 2} 
Movement correlation ρ 0 {0, 0.25, 0.5, 0.75, 1} 
Proportion of camera view 

 
Cp 0.45  {0.15, 0.3, 0.45, 0.65, 0.95} 

 495 



 496 

Fig. 1. An example of a single video frame from a simulated fish population on a sample site. 
Fish are represented by ovals with the width and height representing the relative size at age, 
indicated by the number in the center of the oval. The video viewing frame is delineated between 
the vertical dashed lines with fish outside those lines avoiding detection. Simulation parameters 
are set to Sd = 1, N = 40, and growth and M values are set to the base values indicated in Tables 1 
and 2.  
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 503 

Fig. 2.  Average age and length composition estimates from the video sampling simulation with 
N = 40, M = 0.2, Sd = 1, ρ = 0, and Cp = 0.45 parameter settings and sampling repeated 20,000 
times. MeanCount and MaxN age composition estimates are shown relative to the true 
population.  
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 508 

Fig. 3.  Split violin plots showing the distribution of differences in mean length from the sample 
estimated and true on-site population for MaxN (light blue on left hand side) and MeanCount 
(dark blue on right hand side) methods as a function of number of fish on site for 20,000 random 
samples with N = 5 to 200, M = 0.2, Sd = 1, ρ = 0, and Cp = 0.45 parameter settings. Horizontal 
solid black lines represent medians and the vertical bold lines represent the interquartile range. 
Proportions along the top of each violin plot correspond to the proportion of multinomial 
samples with similarity P-values >= 0.95 when compared to the true multinomial values. 
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Fig. 4.  Split violin plot showing the distribution of differences in mean length from the sample 
estimated and true on-site population for MaxN (light blue on left hand side) and MeanCount 
(dark blue on right hand side) methods as a function of natural mortality (M) values for 20,000 
random samples with N = 40, M = 0.0 to 0.5, Sd = 1, ρ = 0, and Cp = 0.45 parameter settings. 
Horizontal solid black lines represent medians and the vertical bold lines represent the 
interquartile range. Proportions along the top of each violin plot correspond to the proportion of 
multinomial samples with similarity P-values >= 0.95 when compared to the true multinomial 
values.  
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 525 

Fig. 5.  Split violin plot showing the distribution of differences in mean length from the sample 
estimated and true on-site population for MaxN (light blue on left hand side) and MeanCount 
(dark blue on right hand side) methods as a function of fish school density (Sd) values for 20,000 
random samples with N = 40, M = 0.2, Sd = 0 to 2, ρ = 0, and Cp = 0.45 parameter settings. 
Horizontal solid black lines represent medians and the vertical bold lines represent the 
interquartile range. Proportions along the top of each violin plot correspond to the proportion of 
multinomial samples with similarity P-values >= 0.95 when compared to the true multinomial 
values.  
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 534 

Fig. 6.  Split violin plot showing the distribution of differences in mean length from the sample 
estimated and true on-site population for MaxN (light blue on left hand side) and MeanCount 
(dark blue on right hand side) methods as a function of movement correlation (ρ) values for 
20,000 random samples with N = 40, M = 0.2, Sd = 1, ρ = 0.0 to 1.0, and Cp = 0.45 parameter 
settings. Horizontal solid black lines represent medians and the vertical bold lines represent the 
interquartile range. Proportions along the top of each violin plot correspond to the proportion of 
multinomial samples with similarity P-values >= 0.95 when compared to the true multinomial 
values.  
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 543 

Fig. 7.  Split violin plot showing the distribution of differences in mean length from the sample 
estimated and true on-site population for MaxN (light blue on left hand side) and MeanCount 
(dark blue on right hand side) methods as a function of video viewing proportion values for 
20,000 random samples with N = 40, M = 0.2, Sd = 1, ρ = 0, and Cp = 0.15 to 0.95 parameter 
settings. Horizontal solid black lines represent medians and the vertical bold lines represent the 
interquartile range. Proportions along the top of each violin plot correspond to the proportion of 
multinomial samples with similarity P-values >= 0.95 when compared to the true multinomial 
values.  
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 552 

Fig. 8.  Split violin plot showing the distribution of differences in mean length from the 
simulated Red Snapper population for MaxN (light blue on left hand side) and MeanCount (dark 
blue on right hand side) methods as a function of number of fish on-site for 20,000 random 
samples. Horizontal solid black lines represent medians and the vertical bold lines represent the 
interquartile range. Proportions along the top of each violin plot correspond to the proportion of 
multinomial samples with similarity P-values >= 0.95 when compared to the true multinomial 
values.  
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 560 

Fig. 9.  Age and length composition estimates from the video sampling simulation of Red 
Snapper with stochastic values matching those observed in video samples. Sampling repeated 
20,000 times. Average MeanCount and MaxN age and length composition estimates are shown 
relative to the true population. 
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